安裝中文字典英文字典辭典工具!
安裝中文字典英文字典辭典工具!
|
- When is the number $11111\\cdots1$ a prime number?
For which $n$ is the sum: $$\\sum_{k=0}^{n}10^k$$ a prime number? Are they finite?
- elementary number theory - Mathematics Stack Exchange
$ (2)$ Are $1111111111111111111, 11111111111111111111111$ the only happy primes of the form 11111 ? $ (3)$ If not then are there a finite number of circular happy palindromic primes?
- algebra precalculus - Property of 111,111 - Mathematics Stack Exchange
And the next time we hit a prime is with nineteen 1s (that is $\frac {10^ {19}-1} {9}$), so it has only the trivial representation $1111111111111111111 = 555555555555555556^2 - 555555555555555555^2$
- How do you prove a number is prime? - Mathematics Stack Exchange
This particular number is a Mersenne prime, primality of which can be proved using the Lucas-Lehmer Test
- Just Count However You Want To (65) - Christian Forums
1111111111111111111☺111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111
- Permutable Prime number - Mathematics Stack Exchange
A prime number $\\overline{a_1a_2\\ldots a_n}$ is called a permutable prime number, if for any $\\sigma\\in S_n$, the number $\\overline{a_{\\sigma{(1)}}a_{\\sigma{(2
- Why is $111111111 \times 111111111 = 12345678987654321$
I was looking around on the internet until I stumbled upon this equation $$111111111\\times111111111 = 12345678987654321$$ How does this actually work? It is quite amazing how the number ascend and
- Primality test for numbers of the form $(10^p-1) 9$ (and maybe $((10 . . .
Mod(567090245602400840, 1111111111111111111) Mod(76640950307142886, 1111111111111111111) Mod(924987104665055322, 1111111111111111111) Mod(374008108546502807, 1111111111111111111) Mod(143266707375326409, 1111111111111111111) Mod(123, 1111111111111111111) And 1111111111111111111 1111111111111111111 is indeed a prime number
|
|
|