安裝中文字典英文字典辭典工具!
安裝中文字典英文字典辭典工具!
|
- How would you calculate the Δx for a baseball with mass 145 . . . - Socratic
We can calculate #Deltax# using the Heisenberg uncertainty principle: #Deltax*Delta(mv)>=h (4pi)# Since the mass of the baseball will not change and therefore it is constant, the expression becomes:
- Question #33eb8 - Socratic
See a solution process below: Let's call the number of weeks we are looking for: w We can then write a formula: $145 + $36w = $433 And we can now solve for w: First, subtract color(red)($145) from each side of the equation to isolate the w term while keeping the equation balanced: $145 - color(red)($145) + $36w = $433 - color(red)($145) 0 + $36w = $288 $36w = $288 Now, divide each side of the
- How do you add (-8-9i)+(3-6i) in trigonometric form? - Socratic
For a complex number #a+bi# we can repesent this in trigonometric form, as #z=r(costheta+isintheta)# #r=sqrt(a^2+b^2)#
- What is the equation of the line with slope # m= 12 11 - Socratic
y=12 11x+145 11 The equation of a line in slope-intercept form is y=mx+b We are given x, y, and m So, plug these values in: 11=12 11*-2+b 11=-24 11+b 11+24 11=b 121 11+24 11=b 145 11=b This is how I would leave it but feel free to turn it into a mixed fraction or decimal
- Question #48bcb + Example - Socratic
FINAL REMARKS If in a classroom setting, you were given simply mu_(S+L) = 5 2, for relatively light atoms, you could still use the equation for mu_S as an approximation to determine that the number of unpaired electrons is 4, since it is easier to solve: 5 2 = 2 0023sqrt(S(S+1)) -= mu_(S+L) => S^2 + S - 6 745 = 0 Solving this quadratic leads to
- A triangle has sides A, B, and C. The angle between sides A . . . - Socratic
The length of side A is 10 145(3dp) The angle between sides A and B is _c= pi 8=180 8=22 5^0 The angle
- Sans the lone satellite Luna, our planet Earth had cleared . . . - Socratic
Another (2015 TB 145 ) came a little beyond Moon's maximum apogee distance of 405400 km In view of all these findings, it is reasonable to admit that the Earth is yet to clear some NEOs like the asteroid (2016 RB1) that had come as close as 40000 km to the Earth
- Question #88b4c - Socratic
Mar 13, 2017 The decrease in mass will be 56 68 g
|
|
|