安裝中文字典英文字典辭典工具!
安裝中文字典英文字典辭典工具!
|
- Least-squares estimation of transformation parameters between two point . . .
Two point patterns (sets of points) (x sub i ) and (x sub i ); i=1, 2, , n are given in m-dimensional space, and the similarity transformation parameters (rotation, translation, and scaling) that give the least mean squared error between these point patterns are needed
- Least-squares estimation of transformation parameters between two point . . .
Title: Least-squares estimation of transformation parameters between two point patterns - Pattern Analysis and Machine Intelligence, IEEE Transactions on
- 旋转参数的最小方差估计 —— Umeyama 算法详细推导 (I)_umeyama 算法 java-CSDN博客
该算法初见于 S Umeyama 的一篇论文 “Least-squares estimation of transformation parameters between two point patterns” [1] I 引理 —— 旋转参数的最小方差估计 在完整解决相似变换的参数估计前, 原论文先提出了如下引理用于解决一个较小的问题 —— 旋转变换的参数估计
- 两点集间变换参数的最小二乘估计 - 知乎 - 知乎专栏
这篇文章其实可以算作论文 Least-Squares Estimation of Transformation Parameters Between Two Point Patterns的中文翻译,主要是数学推导的内容,关键是要解决一个类似于 ICP 的优化问题——如果存在两组互相对…
- Least-Squares Estimation of Transformation Parameters Between Two Point . . .
The proposed method successfully estimates a rotation that achieves a non-zero least mean squared error instead of a reflection matrix that achieves zero error All of the derivations make use of the Frobenius norm:
- Least-Squares Estimation of Transformation Parameters Between Two Point . . .
Least-Squares Estimation of Transformation Parameters Between Two Point Patternsによる提案手法を読む Least-squares estimation of transformation parameters between two point patterns IEEE Transactions on Pattern Analysis Machine Intelligence 13, 04 (1991), 376–380
- GitHub - clementinboittiaux umeyama-python: Python Umeyamas Algorithm . . .
A python implementation of Umeyama's algorithm presented in Least-Squares Estimation of Transformation Parameters Between Two Point Patterns (Shinji Umeyama, 1991)
- 【Eigen学习笔记】-- Umeyama - CSDN博客
在研究pcl中的icp算法时,看到在求解对应点关系矩阵时,用的是Umeyama算法,此算法在Eigen中已经实现了封装,因此,可直接进行调用求解,该算法的原始论文是:Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10 1109 34 88573。
|
|
|